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Abstract

The flow and heat transfer characteristics of an isolated square cylinder in crossflow placed symmetrically in a planar
slit have been investigated for the range of conditions as 1 6 Re 6 45, 0.7 6 Pr 6 4000 (Pe 6 4000) and b = 1/8, 1/6
and 1/4. Heat transfer correlations have been obtained in the steady flow regime for the constant temperature and con-
stant heat flux boundary conditions on the solid square cylinder in crossflow. In addition, variation of the local Nusselt
number on each face of the obstacle and representative isotherm plots are presented to elucidate the role of Prandtl
number and blockage ratio on drag coefficient and heat transfer.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, considerable interest has been shown
in studying the flow of Newtonian fluids past cylinders
of circular and square cross-section oriented normal to
the direction of flow. Such studies have received impetus
from theoretical considerations, because of the wide
variety of fluid flow phenomena associated with such
idealized shapes as well as from pragmatic consider-
ations, since a reliable knowledge of engineering para-
meters (drag coefficient, Nusselt number, wake size,
etc.) is frequently needed for the design of cooling tow-
ers, chimneys, antennas, support structures, etc. Conse-
quently, over the years, a wealth of information has
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accumulated in the literature, most of which relates to
circular cylinders. The bulk of the information related
to hydrodynamic aspects of this problem has been re-
viewed recently [1,2] whereas the heat transfer aspects
have been surveyed elsewhere [3,4]. However, unlike in
the case of a circular cylinder, the separation points
are fixed for a square cylinder, which thus presents a
quite different case. Based on a combination of numeri-
cal and experimental studies, different flow regimes for
the square cylinder have been identified in the literature
depending upon the value of the Reynolds number [5–
14]. The main flow regimes reported to date are: a creep-
ing flow region in which no flow separation takes place
at the surface of the cylinder (Re 6 1). At low Reynolds
numbers (2 < Re < 60), a closed steady recirculation re-
gion characterized by the formation of two symmetric
vortices behind the bluff body is observed. A critical
value of the Reynolds number seems to lie in the range
50–70, beyond which, a von Karman vortex street forms
ed.
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Nomenclature

b side of the square cylinder (m)
CD total drag coefficient (–) ½¼ FD=ð12 qU

2
maxbÞ�

CDf friction or viscous drag coefficient (–)
CDP pressure drag coefficient (–)
cp specific heat of the fluid (J/kg K)
CV control volume
FD drag force on the cylinder (N/m)
FDf friction drag force on the cylinder (N/m)
FDP pressure drag force on the cylinder (N/m)
h local convective heat transfer coefficient (W/

m2 K)
�h average convective heat transfer coefficient

(W/m2 K)
j Colburn factor for heat transfer (–) [= Nu/

(Re · Pr1/3)]
k thermal conductivity of the fluid (W/m K)
L1 length of the computational domain (m)
L2 height of the computational domain (m)
Lr recirculation length (m)
M number of grid points in the x-direction
N number of grid points in the y-direction
n cylinder surface normal direction (–)
Nu average Nusselt number of the cylinder (–)

½¼ �hb=k�
Nuf average Nusselt number of the front surface

of the cylinder (–)
NuL local Nusselt number of the cylinder (–)

[= hb/k]
Nur average Nusselt number of the rear surface

of the cylinder (–)
Nut average Nusselt number of the top surface

of the cylinder (–)
p pressure (–) ½¼ p0=ðqU2

maxÞ�
Pe Peclet number (–) [= Re · Pr]
Pr Prandtl number (–) [= lcp/k]
qw heat flux (W/m2)
Re Reynolds number (–) [= bUmaxq/l]
t time (–) [= t 0/(b/Umax)]
T temperature (–) ½¼ ðT 0 � T1Þ=ðT 0

w � T1Þ or
ðT 0 � T1Þ=ðqwb=kÞ�

T1 temperature of the fluid at the channel inlet
(K)

T 0
w constant wall temperature at the surface of

the cylinder (K)
u component of the velocity in x-direction (–)

[= u 0/Umax]
Uc average streamwise velocity (–)
Umax maximum velocity of the fluid at the channel

inlet (m/s)
v component of the velocity in y-direction (–)

[= v 0/Umax]
x streamwise coordinate (–) [x 0/b]
Xd downstream face distance of the cylinder

from the outlet (m)
Xu upstream face distance of the cylinder from

the inlet (m)
y transverse coordinate (–) [y 0/b]

Greek symbols

b blockage ratio (–) [= b/L2]
d size of the CV clustered around the cylinder

(m)
D size of the CV far away from the cylinder in

x-direction (m)
l dynamic viscosity of the fluid (Pa s)
U dependent variable in convective boundary

condition (–)
q density of the fluid (kg/m3)

Subscripts

1 inlet condition
f front face of the square cylinder
r rear face of the square cylinder
t top face of the square cylinder
w surface of the square cylinder

Superscript
0 dimensional variable
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in the flow field. When the Reynolds number is further
increased (100 6 Re 6 200), the flow separates at the
leading edges of the cylinder also, and beyond around
Re = 160, the flow becomes three-dimensional in an un-
bounded flow, the onset of which is not fully investi-
gated yet in the literature.

Obviously, not only the values of the engineering
parameters, such as drag coefficient, Nusselt number,
wake size, etc., vary from one regime to another but these
also exhibit different dependence on the Reynolds and
Peclet number. Furthermore, the kinematics of flow and
the macroscopic engineering parameters are also influ-
enced by the blockage ratio, i.e., the relative position of
the bounding walls. This work sets out to elucidate the
role of blockage ratio on the flow and heat transfer char-
acteristics from a square cylinder over wide ranges of Pec-
let number in the steady two-dimensional flow regime.
However, before undertaking a detailed presentation
and discussion of this problem, it is useful to recount
briefly the current status of the relevant literature.
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2. Previous work

Most of the currently available literature on the
incompressible fluid flow over square cylinder relates
to the high Reynolds number region where the main
thrust has been to investigate the wake phenomena, time
dependent drag and lift characteristics, vortex shedding
frequency, etc. In contrast, much less attention has been
devoted to heat transfer characteristics. Davis et al. [15]
investigated, both experimentally and numerically, the
confined flow across a square cylinder for two blockage
ratios (b = 1/6 and 1/4) for a wide range of Reynolds
number (100 6 Re 6 1850). They employed a finite vol-
ume method (FVM) on non-uniform grids of 51 · 28,
76 · 42 and 76 · 52 grid points and found that the
presence of confining wall and the shape of the inflow
velocity profile lead to numerous changes in the charac-
teristics of the flow around the square cylinder in a chan-
nel. Mukhopadhyay et al. [16] carried out a 2D
numerical investigation in the Reynolds number range
55.5–1200 at four blockage ratios (b = 1/8, 1/4, 5/16
and 100/267) with a parabolic velocity field at the chan-
nel inlet and found the periodicity of the flow to be
damped in the downstream region of a long duct due
to the influence of channel walls. With increasing block-
age effect, the value of Strouhal number was seen to in-
crease. Suzuki and Suzuki [17] reported a numerical and
experimental study for the confined flow obstructed by a
square cylinder at constant temperature and at blockage
ratios of 1/10, 1/5 and 50/167 for Re = 50, 100 and 150
(based on average velocity) for various inlet flow condi-
tions in a channel. The flow was found to fluctuate in a
highly periodic fashion and the Karman vortex formed
downstream from the cylinder exhibited a crisscross mo-
tion in the confined channel flow. Valencia [18] studied
the effect of a square cylinder on heat transfer from
the heated channel with a uniform inflow profile at
blockage ratios of 1/4 and 1/2 (corresponding to
Re = 50–500) for air (Pr = 0.71) and reported significant
enhancement in the values of Nusselt number due to the
built-in obstacle. Bernsdorf et al. [19] simulated a 2D
channel flow around a square obstacle for a range of
Reynolds number between 80 and 300 and a blockage
ratio of 1/8 using lattice-Boltzmann (BGK) automata.
Strouhal numbers for time dependent, viscous, incom-
pressible flows were estimated numerically. They also
found that for a correct evaluation of the Strouhal num-
ber, higher grid resolutions are necessary for higher Rey-
nolds numbers owing to the generation of small
secondary vortices below and above the obstacle. Breuer
et al. [5] carried out a 2D study for the confined flow
around a square cylinder in a channel with FVM on
non-equidistant staggered grids in the Reynolds number
range 0.5 6 Re 6 300 for a fixed blockage ratio of 1/8
with parabolic velocity profile at the channel inlet. Both
steady (0.5 6 Re < 60) and unsteady (60 6 Re 6 300)
flows have been investigated. They found an excellent
agreement between the computations of lattice-Boltz-
mann automata (LBA) and of FVM. The integral quan-
tities such as drag coefficient, recirculation length and
Strouhal number were evaluated. Guo et al. [6] also sim-
ulated the confined 2D flow around a square cylinder in
the Reynolds number range 1 6 Re 6 500 for a fixed
blockage ratio of 1/8 by using non-uniform Lattice-
BGK model. It was found that the periodicity of the
flow was damped out for Re > 300. Turki et al. [20,21]
have numerically studied the effect of three blockage ra-
tios (b = 1/8, 1/6 and 1/4) on the 2D unsteady flow past
a square cylinder inside horizontal channel for Reynolds
number ranging from 62 to 300, and for the forced and
mixed convection around a heated cylinder for blockage
ratios of b = 1/8 and 1/4 for Richardson number up to
0.1 in the Reynolds number range from 62 to 200 for
air. The critical value of Reynolds number increases with
the increasing blockage ratio, b in pure forced convec-
tion and it was found at Re = 62, 85 and 120 for
b = 1/8, 1/6 and 1/4, respectively. In mixed convection,
the critical value of Reynolds number decreases with
increasing Richardson number while the Strouhal num-
ber increases with Richardson number. Finally, heat
transfer correlations have been obtained for forced and
mixed convection conditions. Many of these studies
mentioned above are 2D, but it is well known that the
flow becomes 3D at different values of the Reynolds
number, Re which is strongly dependent on the degree
of confinement. It is unclear if the 2D computations
are always realistic for the Reynolds number ranges over
which they have been applied in some of the aforemen-
tioned. Sharma and Eswaran [11–13] investigated the 2D
steady and unsteady periodic flow across a square cylin-
der for both unconfined and confined channel flow with
forced and mixed convection heat transfer. Their results
encompass wide ranges of parameters as 1 6 Re 6 160
and Richardson number = 0 to ±1 for Pr = 0.7. The fo-
cus of these studies was towards understanding the onset
and/or suppression of vortex shedding in the presence or
absence of a channel and/or a buoyancy force. Recently,
Gupta et al. [22] have investigated the 2D steady con-
fined flow (5 6 Re 6 40; b = 1/8) of power law fluids
past a square cylinder for a range of Peclet number 5–
400 by using FDM on uniform staggered grid arrange-
ment in a channel with parabolic velocity profile at the
channel inlet. The shear-thinning behaviour not only
reduces the size of the recirculation region but also de-
lays the wake formation, and shear-thickening fluids
show the opposite effect on the wake formation. They
also found the faster decay in the temperature field
at high Peclet numbers in shear-thinning fluids,
with the reverse behaviour being observed in shear-
thickening. Overall, shear-thinning fluid behaviour facil-
itates heat transfer whereas shear-thickening behaviour
impedes it.
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While it is readily acknowledged that the values of
Prandtl number up to �100 are frequently encountered
in chemical, petroleum and oil related industrial applica-
tions, yet very little prior work is available on the effect of
Prandtl number on the forced convection heat transfer
characteristics from a square cylinder. Furthermore, ow-
ing to the generally high viscosity of process streams, the
Reynolds numbers are not excessively high and the
assumption of 2D steady flow is justified under these con-
ditions. Dhiman et al. [23] have recently studied the effect
of Peclet number (0.7 < Pe < 4000) on the heat transfer
across a square cylinder in an unconfined domain in the
steady flow regime (1 6 Re 6 45). However, no numeri-
cal results are available in the literature on the effects of
Prandtl number on the heat transfer coefficients in the
crossflow of Newtonian fluids past a square cylinder in
the steady flow regime (1 6 Re 6 45) at different block-
age ratios. Therefore, the main objective of the present
work is to study the effect of Prandtl number on the flow
and heat transfer characteristics of an isolated square cyl-
inder in crossflow for the range of conditions as
1 6 Re 6 45 and 0.7 6 Pe 6 4000 and b = 1/8, 1/6 and
1/4. These results in turn have been used to develop heat
transfer correlations for the constant temperature and
constant heat flux boundary conditions prescribed on
the solid square cylinder in crossflow configuration.
The range of the values of Prandtl number varies from
one Reynolds number to another such that the maximum
value of the Peclet number is 4000 in this study. Thus, for
instance, the maximum value of Pr = 50 was used for
Re = 45. This is justified as highly viscous fluids will cor-
respond to large values of Pr and small values of Re.
3. Geometrical configuration

The system of interest here is the confined flow of an
incompressible fluid in a channel with a heated square
cylinder placed symmetrically on the center-line
(Fig. 1). The square cylinder with side b, also the non-
dimensionalizing length scale, is exposed to a parabolic
Solid Boundary

Solid Boundary
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Tw or qw

Xu b Xd

L2/2
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x
y Umax

v = 0

T = 0

L2

Fig. 1. Schematics of the flow around a square cylinder
confined in a channel.
velocity field at the inlet, with the maximum value of
velocity equal to Umax, and a constant temperature of
T1 at the channel inlet. The aim is to simulate an infi-
nitely long channel. However, as the computational do-
main has to be finite, the non-dimensional upstream
distance between the inlet plane and the front surface
of the cylinder, Xu/b, is taken as 8.5, and the non-dimen-
sional downstream distance between the rear surface of
the cylinder and the exit plane, Xd/b, is taken 16.5, with
the total non-dimensional length of the computational
domain L1/b = 26 in the axial direction. In order to ex-
plore the influence of the assumed finite domain, espe-
cially for the lowest Reynolds number, computations
have been carried out for Xu/b = 10.5 and 6.5 for
b = 1/8 and 1/4 at Re = 1 for Xd/b = 16.5. The percent-
age change in the value of CD for Xu/b = 6.5 and 8.5
is < 0.012% with respect to Xu/b = 10.5 for b = 1/8. This
change in the value of CD reduces to <0.018% for b =
1/4. These values of upstream and/or downstream dis-
tances are also in line with those used by others
[9,11,13], and have been shown to give results that
approach the asymptotic values for an infinite channel.
The non-dimensional vertical distance between the
upper and lower walls, L2/b, defines the blockage ratio
(b = b/L2). Three values of the blockage ratio (b = 1/8,
1/6 and 1/4) have been used in this work. The choice
of these values has been guided by the information avail-
able in the literature.
4. Mathematical formulation

The governing equations (in their dimensionless
forms) are the continuity, the x- and y-components of
the Navier–Stokes and the thermal energy equations,
assuming negligible dissipation and constant thermo-
physical properties, as given below.

Continuity:

ou
ox

þ ov
oy

¼ 0 ð1Þ

x-momentum:

ou
ot

þ ouu
ox

þ ovu
oy

¼ � op
ox

þ 1

Re
o2u
ox2

þ o2u
oy2

� �
ð2Þ

y-momentum:

ov
ot

þ ouv
ox

þ ovv
oy

¼ � op
oy

þ 1

Re
o2v
ox2

þ o2v
oy2

� �
ð3Þ

Energy equation:

oT
ot

þ oðuT Þ
ox

þ oðvT Þ
oy

¼ 1

Pe
o
2T
ox2

þ o
2T
oy2

� �
ð4Þ

The dimensionless boundary conditions may be written
as follows:
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• At inlet boundary, u = [1 � (2by)2]; v = 0; T = 0.
• At upper and lower boundary, u ¼ 0; v ¼ 0; oT

oy ¼ 0.
• At square cylinder, u = 0; v = 0; T = 1 (constant tem-
perature case) or oT

on ¼ �1 (constant heat flux case).
• At exit boundary, based on our experience [11–13,22,
23], the Orlanski [24] boundary condition i.e. o/

ot þ
U c

o/
ox ¼ 0 is employed here. Where the average

streamwise velocity, Uc = 2/3 and U is the dependent
variable, u or v or T.

• At the plane of symmetry at y ¼ 0; ou
oy ¼ 0; v ¼ 0;

oT
oy ¼ 0.

Eqs. (1)–(4) together with the above-noted boundary
conditions are solved to obtain u(x, y), v(x, y), p(x, y)
and T(x, y), which in turn can be post-processed to
obtain the values of the integral quantities and of the
derived variables like stream function and vorticity.
5. Numerical methodology

5.1. Grid structure

The grid structure used in the present work is shown
in Fig. 2(a) and (b). It shows the non-uniform grid struc-
ture for the whole of the computational domain
(Fig. 2(a)) and an expanded view near the obstacle is
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Fig. 2. Non-uniform computational grid structure with 323 · 150 g
b = 1/8.
shown in Fig. 2(b) for b = 1/8. It consists of five separate
zones with uniform and non-uniform grid distribution
having a close clustering of grid points in the regions
of large gradients and coarser grids in the regions of
low gradients. Overall, the grid distribution is uniform
with a constant cell size, D = 0.25b, in an outer region
that extends beyond 4 units upstream and downstream
of the cylinder in the x-direction. A much smaller grid
size, d, is clustered in an inner region around the cylinder
over a distance of 1.5 units to adequately capture wake-
wall interactions in both directions. The hyperbolic tan-
gent function has been used for stretching the cell sizes
between these limits of d and D [25] in the x-direction.
A fine grid of size, d, is also clustered near the upper
and lower walls of the channel to capture the wake-wall
interactions. An algebraic expression [26] has been used
for generating the grid points in the region 0.25 units
away from the cylinder and the channel walls in the y-
direction.

5.2. Numerical details

In the present work, the general finite volume method
of Eswaran and Prakash [27] for complex 3D geometries
on a non-staggered grid has been used here in its simpli-
fied form for 2D flows [28]. In brief, the semi-explicit
method has been used to solve the unsteady Navier–
14 16 18 20 22 24 26

10

rid points (a) and an expanded view near the obstacle (b) for



Table 1
Details of four grids used at Re = 45, Pr = 50 and b = 1/4

S. No. Number of uniform
CVs in the clustered
region of 1.5b around
the cylinder

Cell
size (d)

Grid size
(M · N)

1 72 0.0208 225 · 192
2 120 0.0125 283 · 260
3 150 0.0100 323 · 300
4 180 0.0083 353 · 340
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Stokes equations in which the momentum equations are
discretized in an explicit manner, with the exception of
pressure gradient terms which are treated implicitly
[29]. Consequently, the pressure–velocity coupling re-
duces to a Poisson equation for the pressure correction.
The possible oscillations due to pressure–velocity decou-
pling on the collocated grid have been avoided by using
the momentum interpolation scheme of Rhie and Chow
[30]. Two steps are implemented at each time level: first,
a predicted velocity is obtained from the discretized
momentum equation using the previous time-level pres-
sure field; the second corrector step consists of iterative
solution of the pressure-correction equation and in
obtaining the corresponding velocity corrections such
that the final velocity field satisfies the continuity equa-
tion to the prescribed limit. The convective terms are dis-
cretized using QUICK [31] scheme while the diffusive
terms are discretized using the central difference scheme.

The velocity fields obtained by solving the Navier–
Stokes equations are used as an input to the energy
equation. The explicit scheme has been used for the solu-
tion of the energy equation to obtain the temperature
field.

5.3. Choice of numerical parameters

In order to ensure grid independence, four non-uni-
form grids (225 · 192, 283 · 260, 323 · 300 and 353 ·
340, Table 1) were tested for the extreme values of Rey-
nolds number of 45 and of Prandtl number of 50 for the
blockage ratio of 1/4 (Fig. 3). The relative change in the
values of CD and Nu for the coarsest grid with respect to
the finest grid are around 1.15%, and 0.24% (constant
temperature case) and 0.79% (constant heat flux case),
respectively. The difference in the values of CD and Nu

between the last two grid sizes are only about 0.22%,
and 0.06% (constant temperature case) and 0.18% (con-
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Fig. 3. Grid independence results at Re = 45, Pr = 50 and b = 1/4 for
overall average Nusselt number for the cylinder and each of its face. F
cylinder temperature and constant heat flux, respectively, and the symb
front face (Nuf), top face (Nut) and rear face (Nur), respectively.
stant heat flux case), respectively. It is also clear from
Fig. 3 that the sensitivity of the front face Nusselt num-
ber is the highest with respect to the other faces of the
cylinder. The difference in the value of Nuf for the
225 · 192 grid is about 5.9% (constant temperature case)
and 6.3% (constant heat flux case), and for 323 · 300, it
is only 0.7% (constant temperature case) and 0.52%
(constant heat flux case), as compared to the 353 · 340
grid, respectively. Therefore, the 323 · 300 grid size
seems to be sufficiently fine to resolve the flow and heat
transfer fields, and it has been used in all computations
reported in this work.
6. Results and discussion

Extensive numerical computations have been carried
out for Re = 1, 2 and 5 to 45 in the steps of 5 for Peclet
numbers ranging from 0.7 to 4000 for three blockage
ratios (b = 1/8, 1/6 and 1/4) for the symmetric top half
of the channel. The numerical computations have also
been carried out for the full domain configuration
(�L2/2b 6 y 6 L2/2b) for the grid size of 323 · 300 to
ensure that there exists a symmetric steady solution at
least up to Re = 50 for b = 1/8, 1/6, 1/4. Additional test
250 300 350
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250

N
u

f

250250
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the (a) individual and total drag coefficients (b) individual and
illed and open symbols (b) correspond to the cases of constant
olsh,n,, andx represent the average over the cylinder (Nu),



Table 2
Comparison of Lr and CD with the literature values (b = 1/8)

Source Re = 10 Re = 20 Re = 30 Re = 40

Lr CD Lr CD Lr CD Lr CD

Present 0.49 3.63 1.05 2.44 1.62 1.99 2.17 1.75
Breuer et al. [5] 0.49 3.64 1.04 2.50 1.60 2.00 2.15 1.70
Gupta et al. [22] 0.40 3.51 0.90 2.45 1.40 2.06 1.90 1.86

Table 3
Comparison of Lr, CD and Nu with the literature values for
b = 1/5 and 1/2 at Re = 50

b Source Lr CD Nu

1/5 Sharma and Eswaran [13] 2.687 3.622 3.578
Present 2.689 3.603 3.554

1/2 Sharma and Eswaran [13] 1.563 13.299 4.922
Present 1.561 13.208 4.874
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runs have also been carried out for b = 1/5 (M · N =
323 · 300) and b = 1/2 (M · N = 323 · 200) at Re = 50
(based on the average velocity) [13] to confirm the sym-
metry of the flow.

6.1. Validation of results

The numerical solution procedure has been bench-
marked with standard results for the unconfined flow
across a square cylinder reported elsewhere [23]. The
present values of the recirculation length and drag coef-
ficients are compared with those of Breuer et al. [5],
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Gupta et al. [22] in Table 2 for Re = 10, 20, 30 and 40
for b = 1/8. As Breuer et al. [5] have used FVM with a
0.20
0.60
1.00

11 12

-0.015 0.050
0.200

0.600
1.000

8 9 10 11 12
-2

-1

0

1

2

5 -0.005 0.050
0.200

0.600
1.000

11 12

0.100

0.400

0.800

11 12

-0.005 0.100
0.400

0.800

8 9 10 11 12-2

-1

0

1

2

0.01 0.20
0.60

1.00
0.05

8 9 10 11 12-2

-1

0

1

2

-2.00-1.00 0.50

2.00 1.50 1.00
8 9 10 11 12-2

-1

0

1

2
β=1/4

-2.00 -1.00

2.00 1.50
1.00
0.50

8 9 10 11 12-2

-1

0

1

2

-1.00
-0.80

11 12

-1.50

-0.80
-1.00

11 12

-2.00 -1.50 -1.00

2.00 1.50

0.50

8 9 10 11 12
-2

-1

0

1

2

11 12

/6

c

f

i

the results for streamline and vorticity, respectively) for Re = 1,



A.K. Dhiman et al. / International Journal of Heat and Mass Transfer 48 (2005) 4598–4614 4605
clustering region of 100 CVs on the cylinder, in contrast
to 10 CVs on the cylinder by Gupta et al. [22], the for-
mer results are likely to be more accurate. Table 3 pre-
sents a comparison of the present values of Lr, CD and
Nu (Pr = 0.7) with that of Sharma and Eswaran [13]
at Re = 50 (based on average velocity) for b = 1/5 and
1/2. An excellent agreement is seen to exist between
the present results and that of Breuer et al. [5] and of
Sharma and Eswaran [13] in Tables 2 and 3, respectively.
Mukhopadhyay et al. [16] computed the steady flow
solution for b = 1/4 at Re = 37 (based on average velo-
city). They reported that the non-dimensional wake
length to be �2, while the corresponding value in the
present case is 1.7. This discrepancy is very likely due
to the differences of the grids used in these two studies
(Mukhopadhyay et al. [16] have used only 4 or 8 CVs
on each side of the obstacle as opposed to 100 CVs in
the present case). Unfortunately, no experimental data
is found in the literature for comparison for the inlet
flow conditions and blockage ratios employed in this
work. In addition to the above benchmarking, the gen-
eral validity of the code used here has been checked
for a few other flow problems: namely, the flow in a dri-
ven square cavity and the flow through a channel with
backward-facing step in the 2D laminar flow regime;
the results obtained in this work are in perfect agreement
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Fig. 5. Variation of recirculation length (a), friction drag (b), pressure
blockage ratio, respectively: (j) b = 1/8, (m) b = 1/6, (d) b = 1/4.
with the results available in the literature [32,33]. This
further confirms the accuracy and reliability of the pres-
ent numerical solution procedure.

Since the reliability and accuracy of the temperature
(Table 3) field has also been established elsewhere [23], it
is not repeated here.

6.2. Flow patterns

Fig. 4 presents representative flow patterns in the
vicinity of a square cylinder by way of streamlines and
vorticity profiles for Re = 1, 20 and 45 at blockage ratios
of 1/8, 1/6 and 1/4. The streamline profiles are shown in
the upper half of figures while the lower half shows the
vorticity profiles. It is clearly seen in Fig. 4(a)–(c) that
no flow separation occurs from the surface of the cylin-
der at Re = 1 as viscous forces dominate the flow. As the
Reynolds number is gradually increased (2 < Re 6 45),
the flow separates at trailing edges of the cylinder and
a closed recirculation region consisting of two symmetric
vortices is observed behind the body (Fig. 4(d)–(i)). The
size of these recirculation zones increases with an in-
crease in the Reynolds number for a fixed value of the
blockage ratio. It is also seen that the size of recircula-
tion regions decreases with an increase in the blockage
ratio for a fixed value of the Reynolds number. The
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vorticity profiles can also be used to locate the separa-
tion points and to investigate the behaviour of the
fluid flow, especially near the solid walls. For a fixed
value of the blockage ratio, the vorticity contours
seen to transit from being symmetrical at low Reynolds
number to asymmetrical at high Reynolds numbers.
Also, the magnitude of the vorticity is seen to increase
with rising Reynolds number near the surface of the
cylinder. On the other hand, for a fixed value of Rey-
nolds number, the blockage ratio seems to have more
pronounced effect at high Reynolds number than that
at low Reynolds numbers. For instance, for Re = 45
and b = 1/4, the vorticity is seen to change sign near
the wall.

6.3. Recirculation length

Fig. 5(a) shows the computed results of the non-
dimensional recirculation length as a function of the
Fig. 6. Isotherms (upper and lower half present the results for constan
for Re = 1 and Pr = 1, 100 and 4000 at different blockage ratios.
Reynolds number and the blockage ratio. The length
of the recirculation zone is seen to increase linearly with
Reynolds number for a fixed blockage ratio, and to de-
crease with increasing blockage ratio for a fixed value of
Reynolds number. Breuer et al. [5] proposed the follow-
ing linear relationship between the recirculation length
and Reynolds number for a fixed blockage ratio of 1/8
in the steady flow regime (5 < Re < 60):

Lr=b ¼ �0.065þ 0.0554Re ð5Þ

The present results are within ±2% of the predictions of
Eq. (5). The present results can be approximated some-
what better by the following equations:

For b = 1/8,

Lr=b ¼ �0.0732þ 0.0563Re ð6Þ

For b = 1/6,

Lr=b ¼ �0.0454þ 0.0457Re ð7Þ
t cylinder temperature and constant heat flux cases, respectively)
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For b = 1/4,

Lr=b ¼ �0.0145þ 0.0326Re ð8Þ
These correlations have maximum deviations of 0.65%,
1.45% and 4.1% for b = 1/8, 1/6 and 1/4, respectively,
from the computed results in the Reynolds number
range 5 < Re 6 45. Also, since the fitted constants in
Eqs. (6)–(8) show regular variation with b whence these
results can readily be interpolated for the intermediate
values of b. Intuitively, one would expect this depen-
dence to become non-linear at some value of b. Admit-
tedly, the results for b = 1/4 do show slightly non-linear
dependence, but Eq. (8) still describes these results with-
in ±4.1% which is comparable to a second-degree poly-
nomial fit to the data.

6.4. Drag coefficient

The drag force exerted on the obstacle is made up of
two components: viscous drag coefficient ðCDf ¼ FDf

1
2qU

2
maxb

Þ

Fig. 7. The streamline representing the closed near wake (shown by a t
for constant cylinder temperature and constant heat flux cases, respectiv
and pressure drag coefficient ðCDP ¼ FDP
1
2qU

2
maxb

Þ and the

total drag coefficient, CD = CDf + CDP. Fig. 5(b)–(d)
shows the variation of these components with Reynolds
number for three values of b. As expected, the values of
the individual and total drag coefficients show inverse
dependence on the Reynolds number for a fixed block-
age ratio. At low Reynolds numbers, drag coefficients
depend strongly on the Reynolds number (slope of
��1), as the viscous forces play a dominant role in
the steady flow regime. It is also observed that drag coef-
ficients increase as the extent of channel confinement (b)
increases for a fixed Reynolds number.

6.5. Isotherm patterns

Fig. 6 presents the representative isotherms close to
the square cylinder for Re = 1 at different values of Pra-
ndtl numbers (Pr = 1, 100 and 4000) for the blockage ra-
tios of 1/8, 1/6 and 1/4, respectively. The top half shows
hick line) and isotherms (upper and lower half present the results
ely) forRe = 45 and Pr = 1, 10 and 50 at different blockage ratios.
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the isotherms for the isothermal cylinder whereas the
lower half shows the isotherms for the cylinder with con-
stant heat flux condition. For a fixed value of b and Re,
as expected, the thermal boundary layer thickness de-
creases rapidly as the value of Pr is progressively in-
creased from 1 to 4000. On the other hand, for fixed
values of Re and Pr, the isotherms are increasingly dis-
torted by the presence of the adiabatic walls, e.g., see
the results for b = 1/4 at Re = 1 and Pr = 1. As the
value of Pr increases this effect diminishes, presumably
due to the thinning of the thermal boundary layer.
Fig. 7 shows the streamline enclosing the closed near
wake (shown by a thick line) and isotherms near the
square cylinder for Re = 45 at various Prandtl numbers
(Pr = 1, 10 and 50) for the blockage ratios of 1/8, 1/6
and 1/4, respectively. The isotherms for the constant
temperature condition are again shown in the upper half
of the figures while the lower half depicts that for the
constant heat flux condition. It is clearly seen from these
figures that the front surface has the maximum crowding
of the temperature contours, indicating the highest Nus-
selt number as compared to the other faces of the cylin-
der, since the boundary layer starts from this surface.
Fig. 6 also shows the decay of temperature field with
an increase in the Prandtl numbers for both thermal
boundary conditions at different blockage ratios as the
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Fig. 8. Local Nusselt number variation along the cylinder surface (fr
Re = 1 and 45 at different blockage ratios and Prandtl numbers for c
thickness of thermal boundary layer decreases with
increasing Prandtl number. As the Reynolds number in-
creases, the length of the recirculation region increases
and also the crowding of the temperature contours near
the rear surface of the cylinder increases with an increase
in the Prandtl number, for both thermal boundary con-
ditions. Also, the clustering of isotherms increases with
the increasing Reynolds and/or Prandtl number. This
is due to the increased circulation of large amount of
fluid with increasing Reynolds number and/or the
decreasing thickness of the thermal boundary layer with
increasing Prandtl number. Fig. 7 also shows the dimin-
ishing effect of the bounding walls at high Reynolds
number and/or Prandtl number.

6.6. Local Nusselt number

In this study, the local Nusselt number is defined as
� oT

on and 1
Tw

for the two thermal boundary conditions,
respectively. Due to the singularity at the corner of the
obstacle, special attention was paid to the role of the
grid size on the value of the local Nusselt number at each
corner of the obstacle. The peak value of the local Nus-
selt number at the corner point was seen to progressively
decrease as the grid becomes coarser. In spite of such
strong dependence of the corner point values on grid
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interval, owing to the vanishing small heat transfer area,
the surface average values of the Nusselt number are
quite insensitive to the corner values. However, as
mentioned previously, the grid size of 323 · 300 is suffi-
ciently fine to obtain results that are essentially grid
independent.

6.6.1. Constant temperature case (isothermal obstacle)

The effect of blockage ratio on the variation of the lo-
cal Nusselt number along the cylinder surface for the top
half of the square cylinder at Re = 1 and at Re = 45 for
various values of Prandtl numbers is shown in Fig. 8. It
is clear from these plots that the Nusselt number in-
creases with the increasing values of the Reynolds num-
ber and/or Prandtl number at each blockage ratio
studied here. The increase in the Nusselt number in-
creases due to the blockage ratio stems primarily from
the sharpening of the temperature gradients. Also, as ex-
pected each corner of the square cylinder shows high
Nusselt number due to the large temperature gradient
normal to the surface of the obstacle. These plots also
show that the local Nusselt number increases towards
the corner on the front face of the square cylinder as
there is a maximum crowding of isotherms at this face.
On the top surface of the cylinder, there exists a mini-
mum as the Nusselt number increases near the trailing
N
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edge of the cylinder. On the rear surface of the cylinder,
there is a local minimum at the axis of symmetry at
Re = 1 and near the corner at Re = 45.

6.6.2. Constant heat flux case

The effect of blockage on the variation of local Nus-
selt number for the top half of the square cylinder (the
other half is symmetric) along the cylinder surfaces at
Re = 1 and 45 for various values of Prandtl numbers
for the constant heat flux case is shown in Fig. 9 for
b = 1/8, 1/6 and 1/4. These plots reveal qualitatively
similar features as seen above for the constant tempera-
ture condition case.

6.7. Average Nusselt number

The average Nusselt number for each surface (Nuf,
Nur, Nut) of the square cylinder is obtained by averaging
the local Nusselt number over the each face of the obsta-
cle. Finally, the overall mean value of the cylinder Nus-
selt number (Nu) is obtained by averaging the averaged
Nusselt number for each surface of the cylinder.

6.7.1. Constant temperature case

The effect of blockage ratio on the variation of the
average Nusselt number for the square cylinder, and
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each of its faces, as a function of Reynolds number for
various Prandtl numbers is shown in Figs. 10–12. These
figures show that the front surface has the highest aver-
age Nusselt number, the top and bottom surface value is
intermediate, followed by the rear surface. It is also seen
that the average Nusselt number for the cylinder and
each of its faces increases with increasing Reynolds
and/or Prandtl numbers for all blockage ratios investi-
gated here. With an increase in the blockage ratio, the
average Nusselt number for the cylinder and each of
its faces increases because the wake length decreases.

From an application standpoint, it is convenient to
correlate the present heat transfer results by simple
expressions. Simple dimensional considerations suggest
the Nusselt number to be a function of the Reynolds
number, Prandtl number, blockage ratio and the nature
of the thermal boundary condition. For a fixed value of
the blockage ratio and the type of thermal boundary
condition, the average Nusselt number varies approxi-
mately linearly on a logarithmic scale with respect to
Reynolds and Prandtl number over the Peclet number
range 0.7–4000.
Re

N
u

f

0 5 10 15 20 25 30 35 40 45
0

10

20

30
β = 1/8

Re

N
u

r

0 5 10 15 20 25 30 35 40 45
0

5

10

15
β = 1/8

Fig. 10. Average Nusselt number for the cylinder and each of its fac
temperature (filled symbols) and constant heat flux (opened symbols
Pr = 1000, (�) Pr = 2000.
By analogy with the results for the unconfined flow
past a square cylinder [23], it is customary to introduce
the Colburn heat transfer factor (j), as follows:

j ¼ Nu=ðRe� Pr1=3Þ ð9Þ

The use of j factor collapses the results for different val-
ues of the Prandtl number on to one curve and it can
also be used to predict the heat transfer rates at different
Reynolds numbers. This form of presentation also ex-
ploits the usual analogy between heat and mass transfer
thereby allowing the use of Eqs. (10)–(12) to estimate the
corresponding mass transfer coefficient also. A least-
squares method has been used to get a linear fit on a
log–log plot of Nu/Pr1/3 versus Re for various values
of Re and Pr, the following expressions (10)–(12) can
be used to evaluate Nu for different values of b.

Fig. 13(a)–(c) show the present results in terms of the
j factor for the constant temperature case at three values
of the blockage ratios. The results corresponding to dif-
ferent values of Pr are seen to collapse on to one line
corresponding to each value of b for the Reynolds num-
ber range 1 6 Re 6 45 with some deviations at Re = 1
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for b = 1/6 and at Re = 1 and 2 for b =1/4 (Fig. 13). The
following simple expressions correlate the present results
adequately:

For b = 1/8,

j ¼ 0.7155� Re�0.6136 ð10Þ

For b = 1/6,

j ¼ 0.7567� Re�0.6225 ð11Þ

For b = 1/4,

j ¼ 0.8286� Re�0.6266 ð12Þ

These correlations show the heat transfer rates are low
at low Reynolds numbers and high at high Reynolds
numbers. These expressions have average deviations of
the order of 3% for b = 1/8, 1/6 and of 4% for b = 1/4
for the Reynolds number range 1 6 Re 6 45 and the
Peclet number range 0.7 6 Pe 6 4000, respectively; the
maximum deviations are about 10%, 8% and 4% for
b = 1/8, 1/6 and 1/4 which are slightly larger than that
associated with Eqs. (13)–(15) for b = 1/8 and 1/6,
respectively.

6.7.2. Constant heat flux case

The effect of blockage on the variation of average
Nusselt number for the square cylinder, and each of its
faces, as a function of Reynolds number for various Pra-
ndtl numbers for the constant heat flux case is shown in
Figs. 10–12. The dependence of the average Nusselt
number on the Reynolds and Prandtl numbers and
blockage ratio seen in these figures is qualitatively simi-
lar to that observed for the condition of constant tem-
perature. As expected, the overall mean values are
some what larger than those obtained for the constant
temperature case at the same values of b, Pr and Re.

Fig. 13(a)–(c) also show the functional dependency of
the j factor on the flow and heat transfer parameters for
the constant heat flux condition. These results are also
seen to collapse on to one curve for different values of
Prandtl number in the steady flow regime. The following
expressions give reasonable correlations of the numeri-
cal data:

For b = 1/8,

j ¼ 0.7579� Re�0.5929 ð13Þ

For b = 1/6,

j ¼ 0.8015� Re�0.6022 ð14Þ

For b = 1/4,

j ¼ 0.8809� Re�0.6094 ð15Þ

These expressions have average deviations of the order
of 3% for b = 1/8, 1/6 and of 4% for b = 1/4, respec-
tively; the maximum deviation is about 8% for b =
1/8, 1/6 and of 7% for b = 1/4, respectively. However,
the results for low Reynolds number (Re 6 2) and small
Prandtl numbers (61) deviate significantly from Eqs.
(13)–(15), as in other correlations presented previously.
These deviations of the computed results with the corre-
lations at low Re and small Pr is due to no wake forma-
tion for Re 6 2 behind the obstacle, as a result of which
conduction is more dominant here. As expected, the
presence of confining walls enhances heat transfer
depending upon the value of the Peclet number and
the blockage ratio. Broadly, lower is the Reynolds num-
ber, greater is the enhancement. Similarly, it also rises
with the increasing value of b. For instance, for
Pe = 4000 (Re = 1 and Pr = 4000) and b = 1/4, the gain
in heat transfer as compared to the unconfined case is of
the order of 47%.
7. Conclusions

The effect of Peclet number (0.7 6 Pe 6 4000) and
blockage ratio (b = 1/8, 1/6 and 1/4) on the flow and
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heat transfer characteristics of a square cylinder con-
fined in a planar channel has been investigated in the
Reynolds number range 1 6 Re 6 45 in the 2D steady
flow regime. The effect of the type of thermal boundary
condition at the cylinder surface, i.e., constant cylinder
temperature and constant heat flux, on the rate of heat
transfer has also been studied. Broadly speaking, the
use of the constant heat flux boundary condition yields
slightly higher values of the Nusselt number than those
for the constant temperature case under otherwise iden-
tical conditions of b, Re and Pr. The difference in the
computed values of the average Nusselt number for
the two types of thermal boundary conditions increases
as the Prandtl number is increased for fixed values of the
Reynolds number for all blockage ratios. Also, this dif-
ference increases with the increasing Reynolds number
for fixed value of Prandtl number for all blockage ratios.
The local Nusselt number variation on each face of the
cylinder has been determined. Further insights into the
role of blockage ratio, Reynolds and Prandtl number
on the detailed flow and temperature fields have been
provided by including streamline, vorticity and constant
temperature contour plots. The average Nusselt number
increases monotonically with an increase in the Rey-
nolds number and/or Prandtl number. Finally, heat
transfer correlations have been obtained for the constant
temperature and constant heat flux cases on the solid
square cylinder in crossflow over the range of physical
parameters considered in this study.
References

[1] M.M. ZdravkovichFlow Around Circular Cylinders: Fun-
damentals, vol. 1, Oxford University Press, New York,
1997.

[2] M.M. ZdravkovichFlow Around Circular Cylinders:
Applications, vol. 2, Oxford University Press, New York,
2003.

[3] V.T. Morgan, The overall convective heat transfer from
smooth circular cylinders, Adv. Heat Transfer 11 (1975)
199–264.

[4] R.A. Ahmad, Steady-state numerical solution of the
Navier–Stokes and energy equations around a horizontal
cylinder at moderate Reynolds numbers from 100 to 500,
Heat Transfer Eng. 17 (1) (1996) 31–81.

[5] M. Breuer, J. Bernsdorf, T. Zeiser, F. Durst, Accurate
computations of the laminar flow past a square cylinder
based on two different methods: lattice-Boltzmann and
finite-volume, Int. J. Heat Fluid Flow 21 (2000) 186–196.

[6] W.-B. Guo, N.-C. Wang, B.-C. Shi, Z.-L. Guo, Lattice-
BGK simulation of a two-dimensional channel flow
around a square cylinder, Chin. Phys. 12 (1) (2003) 67–74.

[7] A. Okajima, Strouhal numbers of rectangular cylinders,
J. Fluid Mech. 123 (1982) 379–398.

[8] K.M. Kelkar, S.V. Patankar, Numerical prediction of
vortex shedding behind a square cylinder, Int. J. Numer.
Methods Fluids 14 (1992) 327–341.
[9] A. Sohankar, L. Davidson, C. Norberg, Numerical simu-
lation of unsteady flow around a square two-dimensional
cylinder, in: Proceedings of the 12th Australian Fluid
Mechanics Conference, Sydney, Australia, 1995, pp. 517–
520.

[10] R. Franke, W. Rodi, B. Schonung, Numerical calculation
of laminar vortex-shedding flow past cylinders, J. Wind
Eng. Ind. Aerodyn. 35 (1990) 237–257.

[11] A. Sharma, V. Eswaran, Heat and fluid flow across a
square cylinder in the two-dimensional laminar flow
regime, Numer. Heat Transfer Part A 45 (2004) 247–269.

[12] A. Sharma, V. Eswaran, Effect of adding and opposing
buoyancy on the heat and fluid flow across a square
cylinder at Re = 100, Numer. Heat Transfer Part A 45
(2004) 601–624.

[13] A. Sharma, V. Eswaran, Effect of channel-confinement on
the two-dimensional laminar flow and heat transfer across
a square cylinder, Numer. Heat Transfer Part A 47 (2005)
79–107.

[14] J. Robichaux, S. Balachandar, S.P. Vanka, Three-dimen-
sional floquet instability of the wake of square cylinder,
Phys. Fluids 11 (3) (1999) 560–578.

[15] R.W. Davis, E.F. Moore, L.P. Purtell, A numerical–
experimental study of confined flow around rectangular
cylinders, Phys. Fluids 27 (1) (1984) 46–59.

[16] A. Mukhopadhyay, G. Biswas, T. Sundararajan, Numer-
ical investigation of confined wakes behind a square
cylinder in a channel, Int. J. Numer. Methods Fluids 14
(1992) 1473–1484.

[17] K. Suzuki, H. Suzuki, Unsteady heat transfer in a channel
obstructed by an immersed body, in: C.L. Tien (Ed.),
Annual Review of Heat Transfer, vol. 5, Begell House,
New York, 1994, pp. 177–206.

[18] A. Valencia, Heat transfer enhancement in a channel with
a built-in square cylinder, Int. Comm. Heat Mass Transfer
22 (1) (1995) 47–58.

[19] J. Bernsdorf, T. Zeiser, G. Brenner, F. Durst, Simulation
of a 2D channel flow around a square obstacle with lattice-
Boltzmann (BGK) automata, in: Proceedings of the
Seventh International Conference on the Discrete Simula-
tion of Fluids, University of Oxford, 14–18 July 1998,
International Journal of Modern Physics C 9 (8) (1998)
1129–1141.

[20] S. Turki, H. Abbassi, S.B. Nasrallah, Effect of the blockage
ratio on the flow in a channel with a built-in square
cylinder, Comput. Mech. 33 (2003) 22–29.

[21] S. Turki, H. Abbassi, S.B. Nasrallah, Two-dimensional
laminar fluid flow and heat transfer in a channel with a
built-in heated square cylinder, Int. J. Thermal Sci. 42
(2003) 1105–1113.

[22] A.K. Gupta, A. Sharma, R.P. Chhabra, V. Eswaran, Two-
dimensional steady flow of a power law fluid past a square
cylinder in a plane channel: momentum and heat transfer
characteristics, Ind. Eng. Chem. Res. 42 (2003) 5674–
5686.

[23] A.K. Dhiman, R.P. Chhabra, A. Sharma, V. Eswaran,
Effects of Reynolds and Prandtl numbers on the heat
transfer across a square cylinder in the steady flow regime,
Num. Heat Transfer Part A (2005), in press.

[24] I. Orlanski, A simple boundary condition for unbounded
hyperbolic flows, J. Comput. Phys. 21 (1976) 251–269.



4614 A.K. Dhiman et al. / International Journal of Heat and Mass Transfer 48 (2005) 4598–4614
[25] J.F. Thompson, Z.U.A. Warsi, C.W. Mastin, Numerical
Grid Generation: Foundations and Applications, Elsevier
Science, New York, 1985, pp. 305–310.

[26] K.A. Hoffmann, Computational Fluid Dynamics for Engi-
neers, Engineering Education System, Austin, TX, 1989.

[27] V. Eswaran, S. Prakash, A finite volume method for
Navier–Stokes equations, in: Proceedings of the Third
Asian CFD Conference, Bangalore, India, vol. 1, 1998,
pp. 127–136.

[28] A. Sharma, Numerical investigation of unconfined and
channel-confined flow across a square cylinder with forced
and mixed convection heat transfer, Ph.D. Thesis, Indian
Institute of Technology Kanpur, India, 2003.

[29] A. Sharma, V. Eswaran, in: K. Muralidhar, T. Sundar-
arajan (Eds.), A Finite Volume Method: In Computational
Fluid Flow and Heat Transfer, Narosa Publishing House,
New Delhi, 2003, pp. 445–482.

[30] C.M. Rhie, W.L. Chow, A numerical study of the
turbulent flow past an isolated aerofoil with trailing edge
separation, AIAA J. 21 (1983) 1525–1532.

[31] B.P. Leonard, A stable and accurate convective modeling
procedure based on quadratic upstream interpolation,
Comput. Methods Appl. Mech. Eng. 19 (1979) 59–98.

[32] U. Ghia, K.N. Ghia, C.T. Shin, High-Re solutions for
incompressible flow using the Navier–Stokes equations
and a multigrid method, J. Comput. Phys. 48 (1982)
387–411.

[33] A.K. Verma, A finite volume solution method for fluid
flow problems, Ph.D. Thesis, Indian Institute of Techno-
logy Kanpur, India, 1997.


	Flow and heat transfer across a confined square cylinder in the steady flow regime: Effect of Peclet number
	Introduction
	Previous work
	Geometrical configuration
	Mathematical formulation
	Numerical methodology
	Grid structure
	Numerical details
	Choice of numerical parameters

	Results and discussion
	Validation of results
	Flow patterns
	Recirculation length
	Drag coefficient
	Isotherm patterns
	Local Nusselt number
	Constant temperature case (isothermal obstacle)
	Constant heat flux case

	Average Nusselt number
	Constant temperature case
	Constant heat flux case


	Conclusions
	References


